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The dynamic behaviour of a cantilever flexible shaft, carrying a rigid disk at its free end
is presented. The stability of the rotating shaft—disk system, subjected to periodic follower
axial force and end moment is investigated. Due to the periodic nature of the external loads,
the governing equations of motion contain periodic coefficients, which cannot be solved
by the available classical eigenvalue routines. Floquet theory is used along with the
Runge—Kutta method with Gill coefficients to calculate the transition matrix, whose
eigenvalues provide the desired information about system stability. The effect of various
system parameters on the calculated stability boundaries is examined. Such examination
includes rotor speed, damping available in the system and associated with both translation
and tilting of the shaft cross-sections, torque to damping ratio, and axial force to end torque
ratio.
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INTRODUCTION

The improved reliability of rotors has been, and still is a primary concern for designers
and researchers, who have over the years examined their dynamic behaviour in order to
explore all possible means to improve their performance and to achieve the desired design,
which has the highest reliability at minimum cost. Examples of such rotors are bladed disks
found in fans, compressors and turbines, impellers found in compressors and pumps, as
well as aircraft propeller drives and helicopter rotors. Due to pressure difference across
the bladed disk or the impeller, they will be subject to a resultant axial force. Fluid
resistance, however, will generate a load torque, which can be positive or negative. When
the shaft in a gas turbine drives the bladed disk of a compressor, it will do work on the
fluid, and the torque is negative. A positive torque load, however, acts on turbine disk
when the working fluid drives the bladed disk of the turbine. Flexibility of the supporting
shaft will cause the bladed disk or impeller to move and tilt, and the axial force and torque
produced, which are expected to be periodic due to rotation, will remain normal to the
plane of the disk or impeller and tangential to the axis of the shaft. The dynamic stability
of rotors subjected to periodic loads, has been a main concern of researchers for a long
period of time. Several published works on the subject are listed in the book by Loewy
and Piaruli [1]. More recent works which deal with further developments in the field are
available. For example, Ishida ez al. [2], studied the parametric resonance and the influence
of rotor speed on the unstable regions of a shaft—disk system loaded by a sinusoidal axial
force. Kar and Sujata [3] examined the parametric instability of a rotating uniform beam
under pulsating axial force, and examined the effect of rotor speed on the dynamic
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instability regions for various combinations of free, hinged, guided, and clamped boundary
conditions. Chen and Ku [4] employed the finite element method to study the dynamic
stability of a shaft-disk system subjected to a periodic axial force, where the shaft was
modelled as a Timoshenko beam, with shear deformation and rotary inertia taken into
consideration. Sinha [5] used Galerkin’s method to examine the dynamic stability of a
viscoelastic shaft subject to a periodic axial force. In another work [6], he examined the
dynamic stability of a Timoshenko beam subjected to a periodic sinusoidal axial force
superimposed on a static axial component. Namachchivaya [7] considered the dynamic
stability of rotating shafts under parametric excitation consisting of a combination of
harmonic terms and stationary stochastic processes. The dynamic stability of shaft—disk
system loaded by follower torque loads was also addressed by a number of researchers
[8-13] as discussed by Khader [8], who considered the stability of a shaft—disk system
loaded by a follower axial force and end torque. Aida et al. [14] examined the dynamic
stability of structural members with a thin-walled cross-section subjected to a follower
periodic axial force and torque.

The work presented here deals with the dynamic stability of shaft—disk systems loaded
by a periodic follower axial force and end moment. Lagrange’s equation along with the
assumed mode method are employed to derive the governing equations of motion, which
have periodic coefficients due to the periodic nature of the applied load. The resulting
eigenvalue problem from such equations cannot be analysed by the available classical
eigenvalue routines. A method based on Floquet theory is employed to discover all types
of instabilities, where the Runge—Kutta method with Gill coefficients, proposed by
Friedman and Hammond [15], is used for efficient numerical integration to calculate the
transition matrix at the end of one period. The eigenvalues of the transition matrix are
used to calculate the characteristic exponents of the system, whose real part is a measure
of system stability. The stability boundaries for the shaft—disk system considered are
presented, and the effect on these boundaries of damping, rotor speed, ratio of the applied
force and end torque to the available damping, and ratio of the applied axial force to the
applied end torque is evaluated.

2. EQUATIONS OF MOTION

The Lagrangian approach is used to derive the governing equations of motion for a
cantilever shaft carrying a rigid disk at its free end, where the shaft-disk assembly is
subjected to a periodic follower axial force and torque load. The kinetic energy 7', potential
energy U, dissipation function D, and the work of external loads W, are written in terms
of some time-dependent generalised co-ordinates with subsequent application of
Lagrange’s equation.

2.1. STRUCTURAL MODEL

The system considered consists of a flexible cantilever shaft, with a uniformly distributed
mass m;, polar and diametral mass moments of inertia /,, and 7, respectively, and bending
rigidity (EI),, taken the same in the two principal directions. A rigid disk with mass M,
and polar and diametral mass moments of inertia 7,, and I,,, respectively, is attached
at the free end of the shaft. The position vector X for any arbitrary mass element
of the non-rotating shaft—disk system is defined in the undeformed position by its
spanwise Z, radial r, and angular 6. positions. The centreline of the shaft is allowed to
bend by U,(Z, t) and V,(Z, t) along the X- and Y- axes of a fixed-in-space co-ordinate
system, which results in tilting of the shaft’s cross-section by 0,x(Z, t) = 0V,(Z, t)/0Z and
0y (Z,t) = 0U,(Z, t)/0Z about the same axes, respectively. Due to bending of the shaft’s
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centreline and tilting of its cross-section, the disk will have two rigid-body translations
Uut)=UZ=/¢,t) and V,(t)=V,(Z=/¢,t), and two rigid-body rotations
O (Z,t) =0V (Z=1{,1)/0Z and 0,y (t) = 0U,(Z = ¢, t)]0Z, along and about the X- and
Y-axes, respectively. As the shaft rotates with a constant angular velocity wg, the disk and
each shaft cross-section will rotate about an axis normal to their planes at an angle wr¢.
The position vector for any disk (dm), or shaft (dm), element in the rotating and deformed
position, is given in the non-rotating and attached-to-cross-section co-ordinate system
X. Y27, by

r cos Y
{X} ={rsiny},
0

where y = 0. + wrt. As shown in Figure 1, the X, Y,Z, co-ordinate system is related to
the intermediate system X,Y,Z, by V,, the displacement along the Y-axis, and the
associated with it tilting, 6,x. The intermediate co-ordinate system X; Y;Z, is related to
the fixed-in-space system XYZ by Z, the spanwise position of the cross-section the
displacement along the X-axis, U,, and the associated with it tilting, 0,y. Through
the appropriate co-ordinate transformations, the position {X} and velocity {X} vectors
can be expressd in the fixed-in-space system as

U + r cos iy cos Oy
{X} =V +rsiny cos 0y — r cos iy sin Oy sin Oy b, (1)
—r sin y sin Oy — r cos y sin Oy cos Oy

(X} = U{0X/oU} + V{0X/|oV} + 0, {0X/00x} + 0y {0X/00y} + Y {0X/oy}.  (2)

Expressions for the kinetic energy 7', potential energy U, dissipation function D, and work
of external periodic non-conservative loads W, are expressed in terms of the transverse
bending components U, and ¥V of the shaft and the associated rotations of its cross-section,
U and V] as

| o a3 [ o e, ®)

Vol

Figure 1. The shaft—disk system in deformed positions.
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+ S IMAU3 + V3) + 0o+ Lal(ULY + (7)) + 5 [onloa (T3 Vi — U V)
(3a)
EI 7\2 1 2 l ! 2 Y 17 \2 7/ \2
U= 1(US) + (V5 dZ, D=5 | [Cr(Us+ V5) + Cr((Us) + (V5))] dZ
0
4.5)

W.=W.)e+ W)r, (W =éf ((Usy + (Vs))dZ — P(U;Us+ ViVy) dZ,  (6a)

i
(W.)y = TJ (Vi — Ve)Us — (Us — Us)VE ) dZ, P = Pycos wgt;
0

T = T, cos wgt, (6b)

where Cr and Ci are the damping force and moment per unit length of the shaft, taken
the same in all directions. P and T are the follower periodic axial force and torque loads.
The subscripts d and S mean the quantities are referred to the disk and shaft, respectively.
Since the shaft has a circular cross-section, it’s polar moment of inertia is twice it’s
diametral moment of inertia, and this applies also to the disk.

The free vibration mode shapes of the non-rotating flexible shaft (without the disk) are
used as the admissible functions in the assumed mode method to describe the vibratory
motion of the rotating, deformed, and loaded shaft—disk system. Flexible deformations of
the shaft, and the associated with them rigid disk translations and rotations are expressed
below in terms of the non-rotating cantilever shaft mode shapes ¢,(Z) and the time
dependent generalised co-ordinates a,(¢) and b, (¢):

Us(Z, 1) =) ¢ (D)a(t),  Vs(Z, 1) =3 ¢ (2)bi(2). (M

U()=Us(Z=1,0)=Y . (Z=a,(t), Vit)=Vs(Z=1(,1)=Y ¢.(Z=1)b,(2).

®)

OVS(Z ) GUS(Z 0

Osv(Z, 1) = =Y i (Z)b. (1),  Osy(Z,1) = =2 ¢i(Da, (1), (9)

02,0 = EZLD 5 g1z = op o),
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02,0 =L EZLD 2 407 = a0, (10)

The uncoupled free vibration modes ¢, used as trial functions, are identical along the two
principal directions due to the polar symmetry of the cross-section of the shaft under
consideration. If the modal descriptions given above are substituted in the expressions for
T, U, D, and W,, the continuous system is replaced by a discrete system of an order equal
to the total number of generalised co-ordinates a,(¢) and b,(¢), a form suitable for the
application of Lagrange’s equation

(d/d) (0T /0Gm) — (0T]0qn) + (0U[0gn) + (OD[0Gn) = O, (11)

where Q,, = 0W./0q, is the mth generalised force, resulting from the periodic
non-conservative axial force P and end torque T; ¢, can be any of the generalised
co-ordinates a, or b,. Application of Lagrange’s equation results in the following set of
equations of motion:

{J 1o + Lis i1 dZ + My () () + L () (/)}dn
+ U[ [Crnn + Crnpn] dZ}dn + Or U[ Irspnp AZ + Lnapr (£) s (/)}b',,

+ {Jl Elg, ¢; dZ + P{qﬁm ()i (£) — Jl b s dZ}}an

(

+ TU[ Oy dZ — ¢ (£) f o dz}b,, =0, (m,n=1,...,N), (12)
U My + Lisdinpi1dZ + My () (£) + L (), (/)}bl,
+ {ﬁ [Crn + Crpmi] dz}b'n + o {f Loy dZ + Ludp), (£, (/)}an

4 H Elgdr d7 + p{qsm O — f b0, dz}}bn

0

- T{f Gy dZ — ¢ (1) f’ b dZ}a,, =0, (mn=1,...,N). (13)

Introducing the non-dimensional parameters

H= Md/m.r/, ks =/ Izls/msfza k(/ = A/ Idd/Mdfza B = P(J/P(:r,
')):T()//EI, BT:CTZZ/«/EI”’[S, BR:CR/«/EIms, n:Z//,

Wr —_—
T =awyt Qp = wg/w Qpr=— wo = / Ellm;(*
ol, E E/ 0, R 0’ 0 \/ /
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reduces the above equations to another set of more general and convenient-to-use
non-dimensional equations of motion, given in matrix form:

[M]{X} + [C){X} + [K]{X} = {0}, (14)
where

P, is the Euler (critical) buckling load for the cantilever beam,

[ o [ € _[ m (el
[M]‘[[O] [M]} [C]‘[—[C]g [C]d]’ [K]‘[—[G] [H]]’
(X} =[a:b ],

M, = J [P + k3 pnpi 1 dn + p{n (s (1) + ki (i (1,
(Cmn )d = Jv [BT¢W d)” + BR ¢r:1 ()bl:] d’7,
(Con)e = 22 {J ki dn + wkin (D (1)},

H,, = J ¢m ) dn + f cos wEt{@,(l)qﬁ,ﬁ(l) — f X dn},

0

1 1
0 0

Symbols {*} and ()" denote differentiation with respect to non-dimensional time 7 and
spanwise co-ordinate #, respectively.

2.2. STABILITY ANALYSIS

To conduct the desired stability analyses, one first reduces the system with n second
order equations to a system with 2n first order equations:

{4} = [4@®NHq@)},

where

{q}:{ﬁ, [A]:[[M][}] [C] [M][é][lq]

and [A] is a periodic matrix with a common period 7. The transition matrix [@(T, 0)] at
the end of one period is calculated, and the stability of the system is determined by the
characteristic exponents A,, k=1, 2,...,2n, which are related to the cigenvalues A;,
k=1,2,...,2n, of the transition matrix by the relation e = A,, where A, and A, are
complex quantities in general, i.e., Ay = & + 1w, and Ay = Agx + 1Ak, It follows that
&= (1/2T)In (Ax + A%) and @ = (1/T) tan™' (A /Ayx). Since the real part of the
characteristic exponent is a measure of growth or decay of the solution, then the system
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Figure 2. Stability boundaries in terms of torque-to-damping ratio versus the exciting frequency for f/y = 2-0
and Qr = 0-0. (A, Bx=0-0 and Br=0-01; B, Bz = 0-01 and Br = 0-0).

will be unstable if the real part of any one of the characteristic exponents is greater than
zero, i.e., & > 0-0, or |A,| > 1-0.

3. RESULTS AND DISCUSSION

The stability boundaries are calculated for a flexible shaft-rigid disk system with u = 10,
ks =0-1, and k, = 0-25, and subjected to a periodic follower axial force f§ cos wxt and end
torque y cos wxt. A computer program was developed to calculate the transition matrix
[@(T, 0)] at the end of one period. The real parts of the characteristic exponent &;, which
are a measure of system stability, were calculated from the eigenvalues of the transition
matrix. The computer program was tested for the simple case with periodic follower axial
force only. When an acceptable agreement between the calculated stability boundaries and
those reported by Takahashi [16] was achieved, the more general case was considered, and
the effect of axial force to end torque f/y, end torque to damping ratio y/B, and rotational
speed Qr was evaluated, and the corresponding stability boundaries were presented.

In Figures 2 and 3, the calculated stability boundaries at rotor speeds Qz = 0-0 and 4-0,
respectively, are presented in terms of the torque to damping ratio y/B versus the exciting
frequency Q; for the axial force to end torque ratio f/y = 2-0. It is necessary to mention
here that in this study, the exciting frequency Q; is considered to be the same for both
the axial force and end torque. The stability boundaries presented in Figures 2 and 3 cover
positive and negative torque loads, which are found to respond differently to the
gyroscopic moment associated with rotor speed. That is why the stability plots in Figure 3
are not symmetric with respect to the axis of zero torque, while the stability boundaries
presented in Figure 2 are symmetric with respect to the same axis, because the latter were
calculated for zero rotor speed, which implies zero gyroscopic moment. To examine the
effect of the ratio of the axial force to the end torque f/y, stability boundaries are
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Figure 3. Stability boundaries in terms of torque-to-damping ratio versus the exciting frequency for f/y = 2-0

and Qr = 4-0. Key as for Figure 2.

calculated for given end torque to damping ratio y/B and presented in terms of f/y versus

the exciting frequency Q; in Figures 4 and 5, for rotor speeds Qz = 0-0 and 4-0, respectively.

Two curves are shown in each of Figures 2-5. The first one with the wider
unstable region was obtained with only translational damping accounted for, i.e., Bz = 0-0

and By = 0-01, and the second curve, with the smaller unstable region, was obtained with
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only the rotational damping accounted, for i.e., Bx = 0-01 and By = 0-0. This implies that
the rotational damping B; has a stronger stabilizing effect than the translational damping
Br. To further clarify the difference in the stabilizing effect due to Br and Bk, calculations
were carried out for shaft—disk system with f/y =2-0 and Br = 0-01, and the stability
boundaries obtained were presented in terms of the rotational to translational damping
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Figure 6. Stability boundaries in terms of rotational-to-translational damping versus the exciting frequency
for f/y =2-0 and Qr = 0-0.
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Figure 7. Stability boundaries in terms of rotational-to-translational damping versus the exciting frequency

for f/y =2-0 and Qr = 4-0.

ratio Bk /By versus the exciting frequency Q; in Figures 6 and 7, for rotor speeds Qz = 0-0
and 4-0, respectively. Similar calculations were made, but with Bz = 0:01, and the obtained
stability boundaries were presented in terms of the translational to rotational damping
ratio Br /By versus the exciting frequency € in Figures 8 and 9, for rotor speeds Qr = 0-0
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Figure 8. Stability boundaries in terms of translational-to-rotational damping versus the exciting frequency

for f/y =2-0 and Qr = 0-0.
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and 4-0, respectively. From Figures 6 and 7, one notices that when By is increased from
zero to twice the magnitude of By, a noticeable stabilizing effect is introduced and the
unstable regions are reduced as Bz is increased. However, a much less stabilizing effect is
noticed in Figures 8 and 9 as the translational damping Br is increased from zero to twice
the value of the rotational damping Bk, with other system parameters kept constant in

4.0

g
o

Rotor speed Qg

0.0

Exciting frequency Qg

Figure 10. Stability boundaries in terms of rotor speed versus the exciting frequency.
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both cases. This confirms the observation made from Figures 2-5, that the rotational
damping B has a stronger stabilizing effect than the translational damping Br.

As the frequency of the shaft—disk system splits during rotation into two frequencies,
forward and backward, a similar split might take place in the calculated unstable regions.
Such a split is noticed when Figures 3, 5, 7, and 9, on one hand, are compared with
Figures 2, 4, 6, and 8 on the other hand, respectively. One has to remember that the former
and latter sets of figures correspond to rotating and non-rotating systems, respectively.
This is clearly illustrated in Figure 10, where the calculated stability boundaries for a
shaft—disk system with f/y = 2-0, and y/Br = y/Br = 10-0 are presented in terms of rotor
speed Qr versus the exciting frequency Q.

4. CONCLUSIONS

The governing equations of motion are derived for a rotating flexible shaft-rigid disk
system, subjected to a periodic follower axial force and end torque. The equations obtained
include periodic coefficients, and Floquet theory is used in the stability analyses. An
efficient numerical integration scheme is employed to calculate the transition matrix at the
end of one period. The method employed covers all types of instabilities without using the
concept of small parameters and with no restriction on the parameters which affect system
stability. The results presented provide designers with information about the performance
of their product and allow them to select various design parameters to achieve the desired
performance of their product. Examining the results presented, one concludes the
following: first, the gyroscopic moment associated with rotor speed and moment of inertia
interacts differently with positive and negative applied torque loads, which suggests that
the correct sign of end torque is essential to obtain the correct stability boundaries. Second,
the rotational damping in the system has a stronger stabilizing effect than the translational
damping, and this is true for both positive and negative torque loads.
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